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The focal study addresses key gaps in the current understanding 
by investigating a rare case of Permanent Neonatal Diabetes Mellitus 
(PNDM), identifying dysfunction in the KCNQ1/Kv7.1 channel as a novel 
contributor to the disease [8]. The research focuses on a homozygous 
missense mutation in KCNQ1 (C1189T/R397W) discovered in a PNDM 
patient without obvious cardiac symptoms, revealing how this mutation 
affects pancreatic β-cell function. By leveraging an in vitro stem cell-
derived islet model and CRISPR/Cas9 genome editing, the study provides 
important new insights into the KCNQ1 variant’s role in insulin secretion 
and β-cell viability (Figure 1).

Figure 1. (a) Phenotypic analysis of KCNQ1R397W islets (left panel), aimed at 
uncovering the molecular mechanisms leading to diabetes, identified in a 
patient with Permanent Neonatal Diabetes Mellitus (PNDM). (b) KCNQ1R397W 
SC-β cells displayed increased spike frequency and elevated Ca2+ flux in 
response to glucose, resulting in enhanced insulin secretion. Initially, this 
leads to hypersecretion, but over time, the mutant β-cells attempt to restore 
Ca2+ balance, gradually diminishing the hypersecretion phenotype. This 
slow transition is accompanied by metabolic disruption and progressive 
deterioration of the KCNQ1R397W SC-β cells (right panel). Prolonged exposure to 
high glucose levels accelerates irreversible cell damage, eventually leading to 
apoptotic cell death, potentially contributing to the PNDM phenotype.
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R397W mutation impairs KCNQ1 channel function
Although KCNQ1 is located in an epigenetically regulated region 

associated with type 2 diabetes, the C1189T mutation does not interfere 
with epigenetic processes during pancreatic differentiation [5-8]. Instead, 
this mutation alters the helical structure of the channel (Helix A), resulting 
in a loss of function in the Kv channel [8]. Notably, KCNQ1 channels are 
regulated not only by voltage but also by various interacting protein 
partners (e.g., calmodulin), modulatory co-factors (e.g., ATP), and ligands 
such as phosphatidylinositol 4,5-bisphosphate (PIP2) [9]. In particular, the 
R397W mutation has been shown to significantly impair the channel’s ATP 
sensitivity, suggesting that the R397 residue may contribute to forming 
an ATP binding site on KCNQ1 [10]. Rather than directly binding to the 
channel, ATP might modulate KCNQ1 function through interactions with 
regulatory proteins like calmodulin or by influencing the availability of 
different ligands, such as PIP2. Interestingly, PIP2 and ATP have been 
reported to compete in regulating the ATP-sensitive potassium channel 
(KATP) channel, where they act antagonistically: mutations that enhance 
PIP2-mediated channel opening reduce ATP inhibition, leading to Neonatal 
Diabetes Mellitus (NDM). However, the potential interplay between ATP 
and PIP2 in regulating KCNQ1 function remains to be fully clarified [11,12].

Discussion 

SC-derived islet models for in vitro study
Diabetes research often relies on patient samples, cell lines and 

animal models, but these have limitations such as the scarcity of islets, 

Abstract

The KCNQ1/Kv7 channel, part of the Q1 subfamily of voltage-gated 
potassium channels, plays a key role in cardiac rhythm regulation and is 
commonly associated with Long QT syndrome (LQT1). Emerging evidence 
also suggests a role for KCNQ1 in insulin secretion, though its link to both 
hypersecretory and hyposecretory phenotypes complicates its connection 
between cardiac and metabolic syndromes. This complexity is further 
compounded by its epigenetic regulation and association with type 2 
diabetes risk. The focal study investigated a unique case of Permanent 
Neonatal Diabetes Mellitus (PNDM) where KCNQ1/Kv7 dysfunction, 
typically linked to cardiac function, was identified as a novel contributor to 
the disease. Genetic analysis revealed a homozygous missense mutation 
in the KCNQ1 gene (C1189T/R397W) in a PNDM patient who did not exhibit 
overt cardiac symptoms. Using an in vitro Stem Cell (SC)-derived islet 
model and CRISPR/Cas9 gene editing, the study examined the mutation’s 
impact on pancreatic β-cell function. The results show that while the 
C1189T variant does not disrupt epigenetic regulation during pancreatic 
development or differentiation, it leads to a loss of KCNQ1 channel 
function, causing atypical electrophysiology. The SC model demonstrated 
that this impaired channel function results in a stage-dependent pattern 
of insulin secretion, characterized by initial hypersecretion followed by 
eventual pancreatic β-cell failure. 
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Introduction

The KCNQ1 gene encodes the Kv7.1 potassium channel, essential 
for maintaining cardiac action potential and notably associated with 
Long QT syndrome (LQT1), a condition characterized by delayed cardiac 
repolarization and an increased risk of arrhythmias. Beyond its well-
established role in the heart, KCNQ1 also plays a role in regulating insulin 
secretion from pancreatic β-cells [1]. However, its precise function in 
this context remains debated, as mutations have been linked to both 
hyperinsulinemia and impaired insulin secretion, underscoring a complex 
relationship between cardiac and metabolic syndromes [2-4]. Moreover, 
KCNQ1 is situated within an epigenetically regulated region linked to 
susceptibility to Type 2 Diabetes (T2D) [5-7].
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early to draw definitive conclusions about the cardiovascular aspects of 
his condition [8].
Distinct mechanisms of neonatal diabetes mellitus in KATP and Kv 
mutations 

Although mutations in both ATP-sensitive (KATP) and voltage-gated 
(Kv) potassium channels have been associated with Neonatal Diabetes 
Mellitus (NDM), the mechanisms by which these mutations lead to 
NDM are fundamentally different. Activating or Gain-of-Function (GOF) 
mutations in KATP have been linked to human NDM, but the loss of β-cell 
mass in KATP-GOF mouse models is not due to apoptotic cell death. Instead, 
it results from a dedifferentiation process, where mature β-cells lose their 
identity and transition into insulin-negative cells [22]. In contrast, the 
mechanism in KCNQ1R397W mutations involves chronic overstimulation of 
β-cells, leading to their deterioration and eventual apoptotic cell death, 
which contributes to the NDM phenotype.

The study provides valuable insights into the complex phenotype 
associated with the KCNQ1R397W mutation. Although this mutation does 
not hinder pancreatic differentiation, it disrupts channel function, 
resulting in reduced insulin secretion, metabolic imbalance, and eventual 
apoptotic cell death. Despite experiencing intrauterine growth restriction 
and pancreatic cell loss, the PNDM patient with the KCNQ1R397W mutation 
survived [8]. However, the same mutation has been identified in an LQT1 
patient linked to cardiac arrhythmias and sudden death, as well as in a 
case of intrauterine death, suggesting that the homozygous KCNQ1R397W 
mutation, potentially in combination with other factors, could be life-
threatening. The conditions or factors influencing the severity or the 
transition between metabolic and cardiac phenotypes remain to be 
identified [20,21].

Conclusion

The study investigates the role of KCNQ1 in regulating insulin 
secretion from pancreatic β-cells. Through gene editing and the use of 
in vitro SC-islets, the research successfully elucidates the mechanisms 
behind both hypo and hypersecretion phenotypes. The in vitro models 
prove particularly valuable in their ability to replicate the shift in secretion 
phenotypes, suggesting that a hypersecretory phase may precede the 
onset of diabetes.

Although KCNQ1 mutations have been previously associated with 
cardiac disorders and type 2 diabetes, the study reveals a potential link 
between the KCNQ1 channel and a rare form of hereditary diabetes. The 
rarity of PNDM cases and the challenge of identifying patients with the 
same mutation present significant obstacles. Consequently, larger patient 
cohorts and additional research are needed to fully comprehend the 
impact of KCNQ1 mutations on hereditary diabetes, including PNDM.
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