
Emerging Trends in Software Engineering: A Comprehensive Review
Ibrahim M.I, Ibrahim M, Ibrahim A, Nura T.A, Maigari A and Umar M

Department of Mobile and Satellite Communication, Jigawa State Institute of Information Technology, Kazaure, Nigeria

Corresponding Author*

Ibrahim M.I
Department of Mobile and Satellite Communication,
Jigawa State Institute of Information Technology,
Kazaure, Nigeria
E-mail: ibrahimq7@jsiit.edu.ng

Copyright: © 2024 Ibrahim MI, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
are credited.

Received: October 05, 2023, Manuscript No. IJIRSET-23-115856;
Editor assigned: October 07, 2023, PreQC No. IJIRSET-23-115856
(PQ); Reviewed: October 21, 2023, QC No. IJIRSET-23-115856;
Revised: January 03, 2024, Manuscript No. IJIRSET-23-115856 (R);
Published: January 10, 2024, DOI: 10.35248/IJIRSET.24.05(1).001

Abstract

Software engineering is a dynamic field that constantly evolves to
meet the ever-changing demands of technology and industry. This
research paper aims to provide a comprehensive review of
the emerging trends in software engineering, shedding light on
the latest developments, methodologies, and technologies shaping
the industry. The paper explores various key areas of
software engineering, including agile methodologies, DevOps,
Artificial Intelligence (AI) and Machine Learning (ML), cloud
computing. By examining these trends, their impact on software
development, how they differed from traditional approaches, and
their potential future implications, this research paper offers
valuable insights into the evolving landscape of software
engineering.

Keywords: Agile • DSDM • Traditional • DevOps • Cloud • AI/ML

Introduction
As technology continues to advance rapidly, the field of software

engineering is constantly evolving to meet new challenges
and opportunities. Emerging software engineering trends represent
the forefront of innovation, shaping the way software is
developed, deployed, and utilized. Some of the key emerging trends
in software engineering, include artificial intelligence and
machine learning, microservices architecture, low-code/no-code
development, DevOps and Continuous Integration/Continuous
Deployment (CI/CD), server less computing, Internet of Things
(IoT), software development, blockchain and distributed ledger
technologies and edge computing among others [1].

These emerging software engineering trends reflect the
industry's ongoing quest for innovation, efficiency, and improved
user experiences. So, software engineers must adapt to these
trends to stay ahead in an ever-changing technological landscape.

Objectives

Background
Software engineering is a crucial field that addresses the design,

development, testing, deployment, and maintenance of software
systems. It emerged as a response to the growing complexity of
software applications and the need for systematic approaches to
building and managing large-scale software projects. The
background and significance of software engineering can be
understood by the growing software complexity and crisis [2].

In the 1960’s, computer scientists and software developers
began to face what was known as the "software crisis." This crisis
was characterized by the inability to meet project deadlines, budget
overruns, and a high rate of software project failures. The need for a
systematic, engineering-based approach to software development
was recognized [3].

So, in response to the software crisis, the term "software
engineering" was coined at the NATO Science Committee's 1968
Garmisch Conference. The goal was to apply engineering principles
to software development, treating it as a disciplined and repeatable
process.

Literature Review

Agile software development methodologies
Agile methodologies are a set of principles and practices

designed to promote flexibility, collaboration, and adaptability in
software development and project management.

The agile approach contrasts with traditional, linear project
management methods (like the waterfall model) that follow a sequential
and rigid process. Instead, agile methodologies emphasize iterative
development, frequent feedback, and continuous improvement. Some
popular agile methodologies include the following [4]:

Extreme Programming (XP): XP emphasizes technical practices
to ensure high-quality software, such as Test-Driven Development
(TDD), continuous integration, pair programming, and frequent
releases. It aims to deliver valuable software quickly while
maintaining a high level of quality.

Lean software development: Inspired by Lean manufacturing
principles, Lean software development focuses on
minimizing waste, maximizing value, and optimizing the whole
development process. It encourages early and frequent
deliveries, empowering teams to adapt to changes rapidly.

Scrum: Scrum is a widely-used agile framework that organizes
work into fixed-length iterations called "sprints," usually lasting two
to four weeks. It employs a set of predefined roles (Scrum master,
product owner, and development team) and ceremonies (Daily
standups, sprint planning, sprint review, and sprint retrospective) to
facilitate collaboration and incremental development.

Kanban: Kanban is based on the visualization of work items on a
Kanban board, allowing teams to manage their workflow more
efficiently. It promotes a continuous flow of work, with tasks moving
from "To Do" to "In Progress" to "Done" columns, focusing on limiting
work in progress and promoting a steady delivery pace.

 We should note that, the adoption of agile methodologies has led
to numerous benefits, including improved customer
satisfaction, reduced project risks, better adaptability to changing
requirements, and increased collaboration within development
teams. However, it also requires commitment and active
participation from all team members and stakeholders to be truly
effective.

International Journal of Innovative Research in Science, Engineering and Technology, 2024, Vol.5, Issue 1, 1-6 Review Article

1

• To help readers understand the concept of software engineering
and emerging trends in the field.

• To help developers and practitioners understand the benefits of
agile development approach over other traditional methods.

• To compare agile methodologies with traditional approaches in
terms of project outcomes, adaptability to change as well as
team dynamics.

• To examine how technology trends impact software
development processes.

Evolution of agile methodologies
The evolution of agile methodologies is a fascinating journey that

reflects the software development industry's continuous search for
better ways to deliver high-quality products efficiently. The agile
movement originated in the 1990’s, and over time, it has evolved and
diversified into various methodologies and frameworks. Here's a brief
overview of the key milestones in the evolution of agile
methodologies:

Incremental and iterative development (1970’s-1980’s): The
roots of agile can be traced back to the incremental and iterative
development practices introduced in the 1970’s and 1980’s. Early
software developers began to realize the benefits of breaking large
projects into smaller, manageable increments and iterating on them
to improve the product continuously.

Adaptive Software Development (ASD) and crystal (1990’s): In
the early 1990’s, Jim Highsmith developed adaptive software
development, which emphasized collaboration, incremental
development, and embracing change. Around the same time, Alistair
Cockburn introduced crystal methodologies, which focused on
tailoring the development process based on the project's unique
characteristics and team size.

Scrum (Mid 1990’s): Scrum, one of the most popular agile
frameworks, was formalized in the mid 1990’s by Jeff Sutherland and
Ken Schwaber. It draws inspiration from Lean manufacturing and
emphasizes short, time-boxed iterations (sprints), cross-functional
teams, and frequent inspection and adaptation through ceremonies
like daily standups, sprint planning, and retrospectives.

Extreme Programming (XP) (Late 1990’s): XP, developed by Kent
Beck and others, emerged in the late 1990’s. It promoted engineering
practices such as Test-Driven Development (TDD), pair
programming, continuous integration, and small, frequent releases.
XP aimed to deliver high-quality software in a flexible and customer-
centric manner.

Agile manifesto (2001): The term "Agile" gained prominence in
2001 when seventeen software development practitioners, including
representatives from Scrum, XP, ASD, and other approaches, met to
define the core values and principles of agile software development.
This resulted in the agile manifesto, which laid the foundation for the
agile movement.

Agile methodologies proliferation (2000’s): Throughout the 2000’s,
various agile methodologies and frameworks gained popularity, such
as Feature-Driven Development (FDD), Dynamic Systems Development
Method (DSDM), and Kanban. Each methodology offered its unique
approach to agile software development, catering to diverse project
requirements.

Scaling agile (2010’s): As agile adoption spread to larger
organizations and complex projects, the need for scaling agile
methodologies arose. Frameworks like Scaled Agile Framework
(SAFe), Large-Scale Scrum (LeSS), and Disciplined Agile Delivery
(DAD) were developed to address the challenges of scaling agile
practices across multiple teams and departments.

Modern trends and customization (Present): In recent years,
agile has continued to evolve and adapt to changing industry needs
and technological advancements. Trends like DevOps, Continuous
Integration/Continuous Deployment (CI/CD), and Lean agile have
further influenced agile methodologies' evolution, promoting
continuous delivery and increased collaboration between
development and operations teams.

Throughout its evolution, agile methodologies have sparked a
paradigm shift in software development, promoting customer
collaboration, team empowerment, and a focus on delivering
valuable software iteratively. Agile remains a dominant force in
modern software development, and its principles continue to shape
how teams approach projects and respond to ever-changing
business needs.

Agile manifesto and principles
The agile manifesto, created in 2001 by a group of seventeen

software development practitioners, is a foundational document that
defines the core values and principles of agile software development.
It emphasizes a flexible and customer-centric approach to delivering
software, focusing on collaboration, adaptability, and delivering value
[5].

Below are the four (4) key values of the agile manifesto that
software developers used to guide their development tasks.

Agile manifesto values

 Similarly, the twelve (12) principles outlined in the agile manifesto:

International Journal of Innovative Research in Science, Engineering and Technology, 2024, Vol.5, Issue 1, 1-6 Ibrahim MI, et al.

2

• Individuals and interactions over processes and tools:
Agile values the importance of people working together
effectively over relying solely on rigid processes or tools. Good
communication and collaboration are essential to the success
of agile teams.

• Working software over comprehensive documentation: While
documentation has its place, agile prioritizes delivering
functional software that provides value to customers. Working
software is the primary measure of progress.

• Customer collaboration over contract negotiation: Agile
fosters close collaboration with customers and stakeholders
throughout the development process. Customer feedback
is actively sought and used to ensure the delivered software
meets their needs.

• Responding to change over following a plan: Agile recognizes
that requirements and priorities can change during a project’s
course. Instead of rigidly adhering to initial plans, agile teams
embrace change and adapt their approach to maximize value.

Agile manifesto principles

• Satisfy the customer through early and continuous delivery
of valuable software: Agile teams aim to deliver functional
software in short iterations, providing customers with valuable
features early and frequently. Early delivery of deliverables does
not mean quality is compromised.

• Welcoming changing requirements, even late in development:
Agile projects expect and accommodate changes in
requirements, embracing them as opportunities to improve the
software’s fit with customer needs. Customer sophistication in
terms of requirement changes is one of the main reasons why
agility was given birth to. To deny customers of requirement
changes in the course of the development and delivery process
is like going back to the traditional methods of software
development, and not agile methodology.

• Deliver working software frequently, with a preference for
shorter timescales: Frequent delivery of working software
allows for faster feedback and enables teams to adjust their
approach based on real-world results.

• Collaborate daily between business people and developers
throughout the project: Regular collaboration between the
business side and development teams ensures a shared
understanding of project goals and requirements.

• Build projects around motivated individuals, giving them the
support and trust they need to get the job done: Empowered
and motivated individuals are more likely to produce high-quality
results. Agile teams trust their members to make decisions and
value their expertise.

• Use face-to-face communication whenever possible: Face-
to-face communication is highly valued in sgile, as it tends to
foster better understanding, improve collaboration, and build
stronger relationships between team members.

These four (4) values and twelve (12) principles serve as the
guiding philosophy for agile methodologies and encourage teams to
embrace flexibility, adaptability, and continuous improvement in their
software development processes.

Discussion

Modern trends in agile practices
We need to remember that trends in agile practices can vary

depending on the industry, organizational culture, and technological
advancements. It's essential for teams and organizations to stay
informed, remain open to experimentation, and continuously adapt
their agile practices to achieve the best results [6].

Impact of agile on software development
The impact of agile on software development has been profound

and far-reaching. Agile methodologies have revolutionized the way
software is planned, developed, and delivered, leading to numerous
benefits for both development teams and stakeholders. Some of the
key impacts of agile on software development include [7]:

International Journal of Innovative Research in Science, Engineering and Technology, 2024, Vol.5, Issue 1, 1-6 Ibrahim MI, et al.

3

• Working software is the primary measure of progress: Rather
than relying on comprehensive documentation or completed
tasks, agile measures progress based on the delivery of
functional, tested software.

• Maintain a sustainable pace of work for the development
team: Agile teams avoid burnout and maintain productivity
by working at a sustainable pace over the long term. Agility
requires constant pace so that projects can be delivered within
the shortest possible time. This is key, and without it, there is
nothing like agility.

• Continuous attention to technical excellence and good design
enhances agility: Technical practices such as refactoring,
automated testing, and continuous integration are essential
to maintaining code quality and enabling rapid responses to
change.

• Simplicity–the art of maximizing the amount of work not done
is essential: Agile teams aim to minimize unnecessary work and
complexity, focusing on delivering the most valuable features.

• Self-organizing teams make the best architectures,
requirements, and designs emerge: Empowered teams that
collaborate effectively often produce better solutions than
those dictated by external authorities.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly:
Agile teams engage in regular retrospectives to review their
processes, identify areas for improvement, and make the
necessary adjustments to enhance their performance.

• Remote and distributed agile: With the increasing adoption
of remote work and distributed teams, agile practices have
adapted to facilitate collaboration and communication across
geographical locations. Virtual agile ceremonies, collaborative
online tools, and video conferencing have become more
prevalent to maintain team cohesion.

• Agile at scale: Large organizations are embracing agile
methodologies at the enterprise level to coordinate multiple
teams working on complex projects. Frameworks like Scaled
Agile Framework (SAFe), Large-Scale Scrum (LeSS), and
Disciplined Agile Delivery (DAD) provide guidance on how to
scale agile practices effectively.

• Value stream mapping: Teams are focusing on understanding
the entire value stream from idea to delivery, identifying
bottlenecks and inefficiencies. Value stream mapping helps
optimize workflows and reduce lead times, improving overall
delivery speed and customer value.

• Agile for non-software projects: Agile principles are expanding
beyond software development to various other industries and
domains, such as marketing, human resources, and product
management. The application of agile concepts outside of IT is
gaining traction.

• Design thinking and agile: Combining design thinking principles
with agile practices has become popular to emphasize a strong
customer focus and deliver products that truly meet user needs.
The iterative nature of both approaches complements each
other well.

documentation.

• Agile in regulated industries: Industries with strict regulatory
requirements, such as healthcare and finance, are increasingly
adopting agile practices. Companies are finding ways to
balance agile’s flexibility with the need for compliance and
documentation.

• Data-driven agile: Teams are leveraging data and metrics to
make informed decisions, monitor progress, and continuously
improve their agile processes. Data-driven agile helps identify
areas for improvement and validates the impact of changes.

• DevOps and continuous delivery: The integration of DevOps
practices with agile methodologies continues to gain
prominence. Automating deployment pipelines and focusing
on continuous delivery enable faster and more reliable software
releases.

• Agile coaching and mentoring: Agile coaching has become
essential to support teams and organizations in their agile
journey. Agile coaches and mentors help teams understand and
apply agile principles effectively.

• Focus on well-being and psychological safety: Agile
organizations are recognizing the importance of psychological
safety and well-being in fostering a healthy and productive work
environment. Emphasizing team health and work-life balance is
becoming a priority.

• Customer-centric approach: Agile places a strong emphasis
on customer collaboration and delivering value to end-users.
By involving customers throughout the development process
and seeking frequent feedback, agile ensures that the software
aligns with user needs and expectations.

• Iterative and incremental development: Agile practices
promote iterative development and continuous delivery of
small, functional increments of software. This approach allows
for early and frequent releases, enabling faster time-to-market
and faster response to changing requirements.

• Improved quality and flexibility: Agile methodologies, with their
focus on continuous testing and feedback, help identify and
address issues early in the development process. This leads
to higher software quality and the ability to adapt to changes
efficiently.

• Empowered and engaged teams: Agile principles empower
development teams to make decisions, collaborate effectively,
and take ownership of their work. This autonomy fosters a
sense of ownership and motivation among team members.

• Transparency and visibility: Agile practices encourage
transparent communication, visible progress tracking, and open
access to project information. This enhances trust between
stakeholders and the development team, leading to better
decision-making.

• Rapid adaptation to changes: Agile’s flexibility and ability
to embrace change allow software development projects to
adapt quickly to evolving requirements, market conditions, and
technological advancements.

• Early risk identification and mitigation: The iterative nature of
agile development enables early identification of potential risks
and issues, allowing teams to address them proactively before
they escalate.

• Continuous improvement: Agile methodologies promote a
culture of continuous improvement. Regular retrospectives and
feedback loops encourage teams to analyze their processes
and make necessary adjustments to enhance productivity and
efficiency.

Generally, agile has transformed software development by
promoting a culture of adaptability, customer-centricity, collaboration,
and continuous improvement. The impact of agile extends beyond
development teams, positively influencing project success rates,
customer satisfaction, and the ability to deliver software that meets
users' needs effectively.

Cloud computing
Cloud computing is a transformative technology that has

revolutionized the way businesses and individuals access and use
computing resources. It refers to the delivery of various computing
services, including servers, storage, databases, networking, software,
and analytics, over the internet (the cloud). Instead of maintaining
physical servers and data centers on-site, users can access and
utilize these resources on-demand from cloud service providers [8].

Impact of cloud computing on software engineering
 Cloud computing has had a profound impact on software
engineering, transforming the way software is developed, deployed,
and maintained. It has become an integral part of the software
development lifecycle, offering numerous benefits and new
possibilities for developers and businesses.

Besides, cloud computing has revolutionized software engineering
by providing scalable, cost-effective, and innovative solutions. It has
empowered developers to build, deploy, and manage applications
more efficiently, leading to improved software quality, faster delivery
cycles, and increased business agility. As cloud technology continues
to evolve, its impact on software engineering is expected to grow,
driving further advancements in application development and
deployment practices.

Potential future trends in software engineering
 As software engineering continues to evolve, several potential
future trends are expected to shape the industry. These trends are
driven by advancements in technology, changes in user expectations,
and the need to address emerging challenges [9].

 These potential future trends in software engineering are expected
to shape the industry, drive innovation, and create new opportunities
for developers, businesses, and end-users alike. Embracing these
trends and staying updated on emerging technologies will be crucial
for software engineers to remain competitive in the evolving
landscape.

Ethical considerations and challenges
Ethical considerations and challenges are critical aspects of

software engineering, especially as technology continues to advance
and impact various aspects of people's lives. The decisions made by
software engineers can have far-reaching consequences, both
positive and negative.

In the ever-evolving field of software engineering, there is a wide
range of skill sets and workforce requirements that are essential
for success. Software engineers and developers need to possess
technical expertise, as well as soft skills to thrive in
collaborative and dynamic work environments.

Therefore, software engineering as a discipline requires a
combination of technical expertise, soft skills, and an adaptive
mindset. The ability to learn, collaborate, and adapt to changing
technology trends is vital for success in this dynamic field. As
software becomes more intertwined with various industries and
domains, the demand for skilled software engineers continues to
grow, making software engineering a promising and
rewarding career path.

 Attempt to address these ethical considerations and challenges
requires a multi-stakeholder approach involving software engineers,
policymakers, researchers, and users. Ethical guidelines, codes of
conduct, and industry standards can help guide software engineers
in making ethical decisions throughout the software development
lifecycle. Regular reflection and dialogue on ethical issues will be vital
to ensure that technology continues to benefit society while
minimizing its negative impacts.

Skill sets and workforce requirements
 In the ever-evolving field of software engineering, there is a wide
range of skill sets and workforce requirements that are essential for
success. Software engineers and developers need to possess
technical expertise, as well as soft skills to thrive in collaborative and
dynamic work environments.

 Therefore, software engineering as a discipline requires a
combination of technical expertise, soft skills, and an adaptive
mindset. The ability to learn, collaborate, and adapt to changing
technology trends is vital for success in this dynamic field. As
software becomes more intertwined with various industries and
domains, the demand for skilled software engineers continues to
grow, making software engineering a promising and rewarding career
path.

Conclusion
In conclusion, software engineering is a dynamic and rapidly

evolving field that continues to shape the way we live, work, and
interact with technology. From the agile methodologies that promote
flexibility and collaboration to the groundbreaking impact of artificial
intelligence and machine learning, software engineering has
undergone significant transformations.

 The agile manifesto, with its principles of customer collaboration,
iterative development, and responding to change, has revolutionized
software development practices, enabling teams to deliver high-
quality software with greater efficiency and responsiveness to user
needs.

 DevOps, as a cultural and technical movement, has further bridged
the gap between development and operations teams, promoting
continuous integration, continuous delivery, and a focus on
automation to streamline the software development lifecycle. While,
blockchain technology has brought about secure and transparent
decentralized solutions, paving the way for novel applications in
various industries beyond crypto currencies.

Artificial Intelligence (AI) and Machine Learning (ML) are
transforming software engineering by automating tasks, improving
decision-making processes, and enabling the development of
sophisticated applications that learn and adapt. Cloud computing is
another trend that revolutionized how software is deployed, scaled,
and accessed, providing businesses with flexible and cost-effective
solutions to meet their computing needs.

The rise of microservices and containerization has enabled greater
flexibility, scalability, and resilience in software development, breaking
down complex applications into smaller, manageable components.

 While these emerging trends present immense opportunities, they
also come with their share of challenges, such as data privacy,
security concerns, ethical considerations, and the need for
continuous learning and adaptation..

In this dynamic landscape, software engineers must possess a
diverse skill set that includes technical expertise, communication
skills, adaptability, and a strong ethical foundation. By embracing a
user-centric approach, collaboration, and innovation, software
engineering teams can address the challenges and harness the
potential of emerging trends to create software solutions that
positively impact society.

As software engineering continues to evolve, the pursuit of
excellence, ethical practices, and a commitment to lifelong learning
will be essential to driving innovation and shaping a brighter future
for the world of technology.

International Journal of Innovative Research in Science, Engineering and Technology, 2024, Vol.5, Issue 1, 1-6 Ibrahim MI, et al.

• Reduced waste: Agile encourages a focus on delivering the
most valuable features and eliminating unnecessary work,
leading to reduced waste of resources and effort.

• Increased customer satisfaction: The close collaboration with
customers and frequent deliveries of working software result in
higher customer satisfaction and better alignment of the final
product with customer expectations.

• Shorter time-to-market: Agile’s iterative approach allows for
early delivery of valuable features, which can lead to a shorter
time-to-market for software products.

• Enhanced team communication and collaboration: Agile
ceremonies like daily standups, sprint reviews, and retrospectives
facilitate regular communication and collaboration among
team members, fostering a shared understanding of goals and
progress.

4

Cite this article: Ibrahim MI, et al. "Emerging Trends in Software Engineering: A Comprehensive Review". Int J Innov Res Sci Eng
Technol, 2024, 5(1), 1-6.

International Journal of Innovative Research in Science, Engineering and Technology, 2024, Vol.5, Issue 1, 1-6 Ibrahim MI, et al.

5(MRPFT)

Recommendations
Further research in software engineering can explore various areas

to address emerging challenges, enhance existing practices, and push
the boundaries of innovation. Such as ethical issues in Artificial
Intelligence (AI) and Machine Learning (ML), for instance,
Investigation of ethical considerations and bias mitigation techniques
in AI and ML algorithms to ensure fairness, transparency, and
accountability in automated decision-making systems. And also AI-
driven approaches to automated software testing to improve test
coverage, detect defects, and optimize testing processes.

References
1. Lakhani, A. “The Role of DevOps in Digital Transformation.”

Peerbits. (2023).

2. Albayrak, O., et al. “Incomplete software requirements and
assumptions made by software engineers.” 2009 16th Asia-
Pacific Software Engineering Conference, Batu Ferringhi,
Malaysia. IEEE. (2009).

3. Dey, P.P., et al. “Best practices for improving user interface
design.” Int J Soft Eng Appl. 10.5 (2019): 71-83.

4. Sommerville, I. “Agile software development.” Soft Eng. (2015):
72-98.

5. Beck, K., et al. “What is the Agile Manifesto?” Agile Alliance
Group, USA (2019).

6. Indira Gandhi National Open University. “Emerging trends
in software engineering.” I.G.N.O.U., Sch Comp Inform Sci.
(2021): 1-19.

7. Koi-Akrofi, G.Y., et al. “IT project success: Practical frameworks
based on key project control variables.” Int J Soft Eng Appl.
10.5 (2019): 55-69.

8. Koi-Akrofi, G.Y., et al. “Understanding the characteristics,
benefits and challenges of agile it project management: A
literature based perspective.” Int J Soft Eng Appl. 10.5 (2019):
25-44.

9. Zaitsev, A., et al. “Reviewing the role of the agile manifesto
and agile methods in literature.” Twenty-fourth Americas
Conference on Information Systems, New Orleans, USA
(2018).

https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.peerbits.com/blog/role-of-devops-in-digital-transformation.html
https://ieeexplore.ieee.org/document/5358721
https://ieeexplore.ieee.org/document/5358721
https://aircconline.com/ijsea/V10N5/10519ijsea05.pdf
https://aircconline.com/ijsea/V10N5/10519ijsea05.pdf
https://aircconline.com/ijsea/V10N5/10519ijsea02.pdf
https://aircconline.com/ijsea/V10N5/10519ijsea02.pdf
https://aircconline.com/ijsea/V10N5/10519ijsea04.pdf
https://aircconline.com/ijsea/V10N5/10519ijsea04.pdf
https://www.agilealliance.org/agile101/the-agile-manifesto/

	Contents
	Emerging Trends in Software Engineering: A Comprehensive Review
	Corresponding Author*
	Copyright:
	Abstract
	Introduction
	Objectives
	Background

	Literature Review
	Agile software development methodologies
	Evolution of agile methodologies
	Agile manifesto and principles

	Discussion
	Modern trends in agile practices
	Impact of agile on software development
	Cloud computing
	Impact of cloud computing on software engineering
	Potential future trends in software engineering
	Ethical considerations and challenges
	Skill sets and workforce requirements

	Conclusion
	Recommendations
	References

