Renewable Energy Technologies, Sustainable Development and Environment Abdeen Omer Energy Research Institute (ERI) Nottingham, United Kingdom Copyright: 2021 OMER A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ## **Abstract** The move towards a de-carbonised world, driven partly by climate science and partly by the business opportunities it offers, will need the promotion of environmentally friendly alternatives, if an acceptable stabilisation level of atmospheric carbon dioxide is to be achieved. This requires the harnessing and use of natural resources that produce no air pollution or greenhouse gases and provides comfortable coexistence of human, livestock, and plants. This article presents a comprehensive review of energy sources, and the development of sustainable technologies to explore these energy sources. It also includes potential renewable energy technologies, efficient energy systems, energy savings techniques and other mitigation measures necessary to reduce climate changes. The article concludes with the technical status of the ground source heat pumps (GSHP) technologies ## Biography: Abdeen Mustafa Omer (BSc, MSc, PhD) is an Associate Researcher at Energy Research Institute (ERI). He obtained both his PhD degree in the Built Environment and Master of Philosophy degree in Renewable Energy Technologies from the University of Nottingham. He is a qualified Mechanical Engineer with a proven track record within the water industry and renewable energy technologies. He has been graduated from the University of El Menoufia, Egypt, BSc in Mechanical Engineering. His previous experience involved being a member of the research team at the National Council for Research/Energy Research Institute in Sudan and working director of research and development for National Water Equipment Manufacturing Co. Ltd., Sudan. ## References - Materials Sciences and Application, 2011, 2, 859-869 doi:10.4236/msa.2011.27116 - The influence of ageing on martensite morphology in shape memory CuZnAl alloys