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              ABSTRACT
Recently, use of different nanoparticle metal oxides for preventing the spread of microorganisms has reached to the 
expanding field of nanomaterial research. The objective of this study is to validate combined ultrasound and CuO or MgO 
noparticle treatments for inactivating Staphylococcus aureus and Pseudomonas aeruginosa. Results showed that 
nanoparticles of different materials vary in their effectiveness. Ultrasound increased the antibacterial effect of CuO 
nanoparticles more than the increased antibacterial effect of MgO. These results indicated that CuO or MgO nanoparticles 
exhibited antibacterial properties that could be additionally enhanced in the presence of ultrasound and, thus, should be 
further studied for a wide range of medical device anti-infection applications.
Key words: CuO nanoparticles, combined effect, MgO nanoparticles, Staphylococcus aureus, Pseudomonas aeruginosa, 
ultrasound
 Copyright © 2015 Mahboubeh Mirhosseini. This is an open access article distributed under the Creative Commons Attribution License.

  1. INTRODUCTION
he recent rise of antibiotic-resistant microorganisms 
has led to serious health problems. There are an 
increasing number of patients with bacterial 

infection that are resistant to at least one of the antibiotics 
which are generally used to eradicate the disease-causing 
bacteria. This problem encourages researchers to study the 
new advanced methods for characterizing antimicrobial 
agents which can effectively prevent bacterial growth (1). 
The inorganic antimicrobial agents have attracted great 
interest in recent years for the control of microbs. The key 
advantages of inorganic antimicrobial agents compared 
with the organic ones are improved safety and stability (2-
9). Applications of nanotechnology in pharmaceuticals and 
microbiology have been promising to overcome resistance 
in infectious diseases. Various antibacterial agents, 
particularly nanoparticles such as metal and metal oxide, 
have been applied by researchers against various bacteria 
(1). Nanoparticles are much more active than larger-sized 
particles because of their much higher surface area. They 
also exhibit unique physical and chemical properties (6, 10, 
11).
Several types of metal and metal oxide nanoparticles such 
as silver (Ag), silver oxide (Ag2O), titanium dioxide (TiO2), 

zinc oxide (ZnO), gold (Au), calcium oxide (CaO), silica 
(Si), copper oxide (CuO), and magnesium oxide (MgO) 
have been known to show antimicrobial activity (1). Metal 
or metal ions are also essential elements for human body 
and play a role in over 300 enzyme reactions in the body 
(12-14). The effect of ultrasound on the bacteria with and 
without conventional antibiotics has been previously 
specified. A multitude of studies have clearly demonstrated 
that ultrasound can increase the effectiveness of antibiotics. 
It has been demonstrated that low-intensity ultrasound 
could increase the bacterial proliferation due to enhanced 
diffusion of nutrients, oxygen, and metabolic waste 
products, as expected, the enhanced transport of antibiotic 
molecules has been shown to have a net inhibitory effect 
on bacteria (15, 16). However, there are few reports on the 
antimicrobial activity of MgO or CuO nanoparticles in the 
literature, which describe the use of MgO or CuO 
nanoparticles in combination with ultrasound to kill or 
inhibit the growth of pathogens. Thus, the objective of the 
present study is to determine, for the first time, the 
combined influence of ultrasound and MgO or CuO 
nanoparticles on inhibiting the functions of Staphylococcus 
aureus and Pseudomonas aeruginosa. Clearly, identifying 
techniques to enhance the antibacterial effect of 
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nanoparticles may promote the adoption of the clinical use of these novel materials. 
2. MATERIALS AND METHODS
2.1. Materials 
Standard strains of Staphylococcus aureus (PTCC: 1431) 
and Pseudomonas aeruginosa (PTCC: 1074) used in this 
research were collected from the Iran as lyophilized 
microorganisms. This strain of bacteria was cultured in 
trypticase agar medium (TSA, Merck, Germany) and was 
stored at 0-2°C for use in the subsequent steps. CuO 
nanoparticles used in this study was obtained from USA 
Aldrich company and had the purity of %98/99. Also, 
MgO nanoparticles of US Nano Company with the purity 
of %98/99 were prepared. 

2.2. Antibacterial effect of ultrasound
Preliminary experiments which were performed in the 
absence of nanoparticles tested the effect ultrasound 
devices on the viability of bacteria. Bacterial suspensions 
were prepared as described above to produce cell 
populations with the density of 1x107 in 5 ml. S. aureus  
and P. aeruginosa suspensions were transferred to glass 
vials for experimentation. The ultrasound device, a water 
bath sonicator (Elma sonic, Germany), was operated 
setting for 1, 5, and 10 min. Immediately after the 
ultrasound stimulation, the samples were processed to 
determine the viable colony-forming unit density (15, 16).
 
2.3. Antibacterial activity of CuO and MgO nanoparticles 
under static conditions
A second group of experiments evaluated the antibacterial 
effect of nanoparticles in the absence of ultrasound 
stimulation. S. aureus and P. aeruginosa suspensions were 
prepared as described above to produce the cell 
populations at the density of 1 x 107 CFU ml-1 in 5 ml of 
TSB media. Nanoparticles of CuO with the diameter of 
about <50 nm or MgO with the diameter of 20-30 nm were 
then added to 1x 107 CFU ml-1  S. aureus  or P. aeruginosa 
bacterial suspensions at the concentrations of 100; 250, or 
500 µg ml-1.The samples were placed in an incubator at 
37°C for 24 h. After 24 h, the samples were serially diluted 
and processed to determine the viable colony-forming unit 
density (15-18). 

2.4. Antibacterial activity of the combination of CuO or 
MgO nanoparticles and ultrasound
Finally, the experiments were conducted to evaluate the 
effect of the combination of CuO or MgO nanoparticles 
and ultrasound stimulation. CuO or MgO nanoparticles 
were added at the concentration of  250 and 500 µg ml-1 to 
5 ml of S. aureus  or P. aeruginosa cultures in glass vials 
at the cell density of 1 x 107 CFU ml-1. Cell suspensions 
were ultrasonically stimulated by the ultrasound device, as 
described above, setting for 5 and 10 min. The samples 
were then placed in an incubator at 37°C. At 6 h and 24 h, 
they were serially diluted and plated, as previously 
described. After an overnight incubation of the plated 
samples, the visible CFU was counted  (15, 16).

2.6. Statistical analysis
Numerical data were analyzed for significance using  
analysis of variance. Experiments were repeated for three 
times. Values were reported as mean ± SEM. The 
threshold for significance was set at p < 0:05.

3. RESULTS AND DISCUSSION
3.1. Results of bacterial activity with ultrasound stimulus 
Ultrasound stimulation with the water bath sonicator 
(Figure 1) devices did not result in the reduced viability of 
the bacterial species tested in any of the considered 
exposure periods. The mechanism of action of ultrasound 
energy on bacteria is complex and parameter-dependent. 
However, ultrasound has the ability or capacity for 
bactericidal activity either alone or in association with an 
additional antimicrobial agent. While low intensity 
ultrasound may prompt cell proliferation, high intensity 
ultrasound has the ability or capacity for killing cells (15, 
16). Johnson et al. investigated the range of time necessary 
to completely destroy a biofilm with low frequency 
ultrasound (19). As determined by total population counts, 
a bacteria biofilm grown for 14 h was completely 
destroyed after 6 h of ultrasound exposure. Low frequency 
ultrasound (26 kHz) was shown to kill a wide range of 
microorganisms (including S. aureus, P. aeruginosa, B. 
subtilis, and E. coli) in a time-dependent manner (20). 
With the exception of E. coli, all of the microorganisms 
were killed in a dose-dependent manner as well. 
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Figure 1. Ultrasound stimulation of bacteria in a waterbath sonicator for 1-10 min did not significantly reduce viability compared to unstimulated control groups 
for either S. aureus or P. aeruginosa. Values are mean ± SEM; N = 3.

3.2. Results of bacterial activity in the presence of MgO or 
CuO nanoparticles 
MgO nanoparticles did not significantly reduce the growth 
of S. aureus. P. aeruginosa; however, they were 
significantly reduced (8.55% and 9.01% reduction 
compared to the control, respectively) in the presence of 
the 500 μg/ml concentration of MgO nanoparticles (Figure 
2). Makhluf et al. (2005) studied the antibacterial activities 
of MgO and demonstrated the following antibacterial 
mechanisms:
Active oxygen production due to the presence of MgO, 
attractive interaction between MgO nanoparticles and cell 
wall, diffusion  of MgO nanoparticles into cells, and 
reformation of MgO within the cell (21). Stoimenov et al. 
(2002), on the other hand, indicated that electrostatic 

interactions between the bacterial surface and MgO 
nanoparticles killed the bacteria (22). CuO nanoparticles 
significantly reduced the growth of both S. aureus and P. 
aeruginosa at the concentration of 500 μg/ml and also 
reduced the growth of S. aureus and P. aeruginosa by 24% 
and 7.9%, respectively (Figure 2). Copper, like silver, 
showed antimicrobial properties. Copper nanoparticles  
reduced E. coli and B. subtilis by 90% at the 
concentrations of 33.40 μg/ml and 28.20 μg/ml, 
respectively (23). The mechanism which the copper 
nanoparticles reduced the number of viable bacteria was 
related to protein inactivation, specifically cysteine-
containing enzymes, via thiol interactions (15). 
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Figure 2. Growth of S. aureus (top) and P. aeruginosa (bottom) in the presence of CuO or MgO at 100 µg/ml, 250 µg/ml or 500 µg/ml for 24 h. Values are mean 
± SEM; N = 3; *p < 0.05 (compared to control).

3.3 Results of bacterial activity with CuO or MgO 
nanoparticles and ultrasound stimulus 
CuO nanoparticles and a 5 or 10 min ultrasound stimulus 
reduced S. aureus or P. aeruginosa viability so effectively 
that was comparable with CuO nanoparticles. At 24 h, 500 
μg/ml of CuO nanoparticles and 10 min ultrasound 
stimulus reduced S. aureus or P. aeruginosa viability by 

about 2.63 log and 2.88 compared to the control, 
respectively (Figure 3). The nanoparticles, due to their 
increased functional surface area and potential to penetrate 
into cell membranes, were more effective antimicrobial 
agents (6, 10, 11).
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Figure 3. Reduced S. aureus or P. aeruginosa in the presence of CuO nanoparticles and ultrasound stimulus. The addition of ultrasound enhanced the 
antibacterial effect of CuO nanoparticles. Values are mean ± SEM; N = 3; #p < 0.05 (compared to control at the same time point).

At the concentrations of 500 μg/ml, MgO nanoparticles 
reduced S. aureus viability under static conditions by 
approximately about 0.82 log at 24 h, respectively (Figure 
4). The addition of 5 or 10 min ultrasound stimulus to the S. 
aureus suspension with 500 μg/ml of MgO nanoparticles 

had no significant inhibition  in S. aureus density. 
MgO nanoparticles and 5 or 10 min ultrasound stimulus 
reduced P. aeruginosa viability so effectively that was 
comparable with MgO nanoparticle alone. However, 
ultrasound did not significantly increase the antibacterial 

 a        b     b
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effect of MgO nanoparticles  (Figure 4).
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Figure 4. Reduced S. aureusor or P. aeruginosa in the presence of MgO nanoparticles and ultrasound stimulus. The addition of ultrasound enhanced the 
antibacterial effect of MgO nanoparticles. Values are mean ± SEM; N = 3; #p < 0.05 (compared to control at the same time point).

Justin and Thomas (2012) investigated the antimicrobial 
effect of ZnO nanoparticles combined with ultrasound. 
Results showed that addition of ultrasound increased the 
antimicrobial effect of ZnO nanoparticles (16). However, 
there are few reports on the antimicrobial activity of 

nanoparticles in the articles describing the use of 
nanoparticles in combination with ultrasound to kill or 
inhibit the growth of bacteria. The antibacterial and 
antibiofilm mechanisms of nanoparticles may be definitely 
increased in combination with ultrasound. Specifically, 
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physical interactions between the nanoparticle and 
bacterial membrane may be enhanced due to nanoparticle 
disassociation; also, nanoparticle penetration into cell 
membranes may be enhanced through ultrasound 
stimulation. Furthermore, antimicrobial metal ions may be 
released from particle surfaces more rapidly in the 
presence of ultrasound stimulation (15, 16).

4. CONCLUSION                                                                                                                     
Due to the ever-increasing ineffectiveness of traditional 
antibiotics, nanoparticles have received greater attention 
for their potential antimicrobial effects and applications. In 
vitro studies have identified nanoparticle concentrations 
which inhibit a variety of bacteria species, including S. 
aureus and P. aeruginosa. Nanoparticles of different 
materials vary in their effectiveness. Ultrasound increased 
the antibacterial effect of CuO nanoparticles more than the 
increase in the antibacterial effect of MgO.
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