A nuclear localization signal or sequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysine’s or arginine’s exposed on the protein surface. Different nuclear localized proteins may share the same NLS. An NLS has the opposite function of a nuclear export signal (NES), which targets proteins out of the nucleus. These types of NLSs can be further classified as either monopartite or bipartite. The major structural differences between the two is that the two basic amino acid clusters in bipartite NLSs are separated by a relatively short spacer sequence (hence bipartite - 2 parts), while monopartite NLSs are not. The presence of the nuclear membrane that sequesters the cellular DNA is the defining feature of eukaryotic cells. The nuclear membrane, therefore, separates the nuclear processes of DNA replication and RNA transcription from the cytoplasmic process of protein production. Proteins required in the nucleus must be directed there by some mechanism. The first direct experimental examination of the ability of nuclear proteins to accumulate in the nucleus were carried out by John Gurdon when he showed that purified nuclear proteins accumulate in the nucleus of frog (Xenopus) oocytes after being micro-injected into the cytoplasm. These experiments were part of a series that subsequently led to studies of nuclear reprogramming, directly relevant to stem cell research.