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Introduction
With the advance of medical science, people have gradually 

become aware of the importance of pain management because pain can 
negatively affect quality of health care and even do more harm than an 
illness itself when it becomes intolerable. According to the studies, PCA 
(patient-controlled analgesia) is one of the most effective techniques for 
postoperative analgesia [1,2].

Despite the fact that IV-PCA (Intravenous PCA) has been widely 
used in hospitals for its effectiveness and safety as acute postoperative 
pain management, PCA also usually entails (PONV) post-operative 
nausea and vomiting that complicates recovery from surgery and 
decreases patient satisfaction [3,4]. In some studies patients were, on 
average, willing to pay extra $56 to avoid PONV; the figure increased to 
$73 and $100 in patients who had experienced postoperative nausea or 
vomiting, respectively [5,6].

Most previous studies of PONV were focused on identifying the 
risk factors, using regression techniques or proposing probabilistic 
models [7-10]. A recent work that applied an artificial neural network 
to predict postoperative vomiting has been proposed [11]. In this study, 
we investigated patient PCA demand behaviors, and derived demand 
pattern attributes by clustering demand profiles for PONV prediction. 
In addition, we proposed to use a neighborhood-based data cleaning 
technique to clarify class boundary. Lastly, we conducted a comparison 
of various machine learning classifiers to identify the best feature set 
and classifiers for PONV prediction. Our goal is to improve PONV 
prediction to increase patient satisfaction by applying machine learning 
methods and analyzing IV-PCA patient demand behaviors.

Materials and Methods
Study subjects

We collected and analyzed IV-PCA usage profiles from bone 
surgery patient records from 2009 to 2014 at Changhua Christian 
Hospital. Abbott Pain Management Provider (Abbott Lab, Chicago, 
IL, USA) was used for IV-PCA treatment. After excluding incomplete 
IV-PCA log files and patient records with missing values, we obtained
392 patient records. Of these 392 subjects, 121 had PONV and the
remaining 271 showed no PONV. Each patient received at least 24 h of

IV-PCA medication without using any antiemetic drugs. Each subject
is represented by totally 28 basic attributes divided into 5 categories: (a) 
demographic, (b) biomedical, (c) operation-related, (d) opioid-related,
and (e) PCA-related attributes.

PCA demand behavior pattern attributes

In addition to commonly studied demographic and physiological 
factors relevant to analgesic consumption, IV-PCA related attributes, 
such as the number of demands per hour, have been shown to correlate 
significantly with analgesic consumption prediction [11,12]. These 
findings suggest that these demand behavior-related attributes are likely 
to correlate with incidences of postoperative nausea and vomiting. 
To generate behavior pattern attributes for PONV prediction, we 
considered two types of pattern attributes based on time domain and 
frequency domain, respectively.

For time-based behavior pattern attributes, we first characterize 
different IV-PCA demand behaviors in the course of time. We retrieved 
the IV-PCA demand data from each patient’s IV-PCA treatment log file 
and derived three types of IV-PCA profiles based on (a) the number of 
successful IV-PCA demands in each time unit, (a) the number of failed 
IV-PCA demands in each time unit, and (c) the IV-PCA dose for each
time unit. Four different time units were used in this study: 60 min, 45
min, 30 min and 20 min. We show a sample IV-PCA time-based dose
profile in Figure 1.

From a time-based behavior pattern we can observe the change in 
the number of PCA demands and the amount of analgesic consumption; 
however, we cannot distinguish the distributions of PCA demands in 
different frequencies. Therefore, we also applied Fourier transform 
to time-based profiles to obtain a frequency-based profile. A sample 
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frequency-based IV-PCA dose profile transformed from Figure 1 is 
shown in Figure 2.

After the process of various IV-PCA profiles, we applied k-medoid 
clustering to these profiles to identify significant demand patterns among 
the study patients. Figure 3 shows the four patterns identified in the time-
based IV-PCA dose profiles of the 392 patients in a 12 h time period [13]. 

The demand profiles grouped into a cluster demonstrated similar 
demand behaviors, and the medoid of a cluster represented the 
behavior pattern for that cluster over time. By applying k-medoids to 
different IV-PCA demand profiles, we generated different demand-
pattern attributes. We expected the inclusion of demand patterns of the 
first few hours of IV-PCA usage to improve PONV prediction.   

Feature selection

We used 28 basic patient attributes, classified in 5 categories, to 
describe each study subject. In addition, we derived a number of 
different PCA demand pattern attributes from various PCA demand 

profiles, based on different time units, different demand reference (e.g. 
dose or successful demand), and various values of k for k-medoids 
clustering. Though these attributes can characterize patient behaviors, 
they may also negatively interact with those 28 basic attributes. To avoid 
negative interaction among the features, we selected important features 
according to their information gain and used only these selected 
features to represent each patient. We show the feature selection process 
in Figure 4.

Data cleaning

Nausea and vomiting are most common adverse effects of IV-

Figure 1: A sample time-based IV-PCA dose profile in a 12 h time period. The 
X-axis is time and the Y-axis is the total PCA dose in each 20 min interval.

Figure 2: A sample frequency-based IV-PCA dose profile in a 12 h time period.

Figure 3: Average IV-PCA demand behavior in each cluster. The X-axis 
indicates the 12 h time line. The Y-axis represents the PCA dose within a 
particular 20 min time unit. 

Figure 4: Feature selection based on information gain.
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PCA with reported incidence of 3.1 to 34% [14,15]. From the point of 
machine learning, prediction of nausea and vomiting is a classification 
problem in an imbalanced class domain. Conventional machine-
learning algorithms are typically biased toward the majority class, and 
produce poor predictive accuracy for the minority class. In addition 
to unequal class distribution, instances sparsely scattered in the data 
space make the prediction of a minority class even more difficult. 
We applied a neighborhood-based data cleaning approach to remove 
spurious data points of the majority class. It first identifies the k-nearest 
neighbors of each instance of the minority class and considers any 
majority class neighbor as “dirty.” After examining each instance in 
the minority class and its neighbors, the proposed approach removes 
those “dirty” instances. The rationale behind this process is that the 
nearest majority class neighbors of a minority class member are likely 
to mislead learning algorithms. Without them, learning algorithms 
can more easily recognize the minority class boundary. We illustrate 
the concept in Figure 5. Figure 5a shows an imbalanced data set before 
removing “dirty” instances. The rectangles in this figure represent 
the decision regions of the minority class, and several majority class 
examples are also included. The proposed approach first locates the 
k-nearest neighbors (e.g. k=3) for each minority class example and then 
presents the neighbors as linked to each minority class example (Figure 
5b) and crosses out the “dirty” majority class neighbors (Figure 5c). 
Removing the “dirty” examples produces the “clean” decision regions of 
the minority class (Figure 5d).

performance measures
We evaluated prediction performances by using several measures: 

percentage accuracy, F-score and MCC. Table 1 lists the definitions of 
these measures.

For the problem of PONV prediction, high true positive rate is more 
desirable compared with other measures, e.g. accuracy, because nausea 
and vomiting, in addition to pan, are the most frequent negative effects 
of patient satisfaction and the number of patients showing PONV is 
significantly smaller than those showing no PONV (3.1~34% PONV). 
Therefore, our goal is to apply machine learning techniques to obtain 
the highest F-score rather than the overall accuracy. We show the other 
performance measures for reference.

Machine learning classifiers in comparison
We tested 9 classifiers on PONV prediction. These classifiers can 
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Figure 5: The X- and Y-axes represent two attributes in the feature space. The minority class examples are denoted by black circles and the majority class examples 
are denoted by white circles. Black rectangles indicate the axis-parallel decision regions of the minority class. (a) We show an imbalanced data set with sparse minority 
class examples. The decision regions of the minority class contain the majority class examples. (b) To identify the “dirty” examples that may mislead learning, the 
proposed method locates k-nearest (where k is 3 in this example) neighbors for each minority class example. The 3-nearest neighbors of a minority class example are 
indicated by links. (c) A black cross marks each “dirty” example. (e) After the “dirty” examples are removed, the decision regions are “clean” (i.e., they contain only the 
minority class examples). Using these clean decision regions, learning algorithms can more easily recognize the correct boundary between classes.

Performance Measure Definition
Recall TP/(TP+FN)

Precision TP/(TP+FP)
F-score 2 × Recall × Precision/(Recall+Precision)

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
× − ×

+ + + +

Accuracy (TP+TN)/(TP+TN+FP+FN)

Table 1: Performance measures.
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be characterized into six categories: (a) decision-based, (b) instance-
based (c) probabilistic, (d) neural network, (e) feature-based, and 
(f) ensemble. We list the classifiers in Table 2. These classifiers have 
different design philosophies and applicability. There is little research 
into applications of machine learning to postoperative nausea and 
vomiting prediction. Through a comparative study, we intended to 
identify the superior classifiers and the appropriate patient features for 
PONV prediction. 

Results
The goal of this study is twofold: (1) to compare the effects of 

different types of patient features as PONV risk factors, and (2) to 
evaluate the performance of different machine learning techniques 
for predicting PONV. To conduct a comparative study of risk factors, 
we divided patient features into 3 groups: (a) basic patient features, 
including demographic, biomedical, operation-related, and analgesics-
related attributes, (b) in addition to basic features, PCA-related 
attributes are included, and (c) the complete feature set with behavior 
pattern attributes added. We performed experiments to evaluate the 
feasibility of various machine learning techniques, namely feature 
selection, data cleaning, and classification, and verified the synergy of 
the combination of these techniques. The experiments were conducted 
by performing stratified 10-fold cross-validation of 392 study subjects.

Experiment of classifiers using different groups of patient 
features

We tested the classifiers listed in Table 2, using different groups 
of patient features. We present the results in Table 3. The results for 
each classifier are presented in the order of groups (a), (b), (c) based on 
time domain, and (c) based on frequency domain, separately. For each 
classifier, we also performed a paired t-test between using group (a) 
and using the other feature groups, individually. A significant difference 
(p-val<0.05) is indicated by a star symbol.

Table 3 shows that the addition of more features (PCA-related and 
behavior pattern) had little effect on most of the classifiers in study.  On 
the other hand, we observed that these extra features could adversely 
hinder the learning of particular types of classifiers such as probabilistic 
learners, and feature-based learners. It suggests that the interactions 
incurred by more features significantly affect some classifiers. This 
finding reconfirmed that these learning algorithms have their own 
distinct characteristics and different applicability. 

Experiment of feature selection

We hypothesized that the addition of extra features did not show 
improvement for PONV prediction in the first experiment was mainly 
due to adverse feature interactions. To verify our hypothesis, we first 
selected important features based on their information gain and then 

re-ran the experiment, using the selected features. We show the results 
after feature selection in Table 4. Like in Table 3, we present the results 
for each classifier in the order of groups (a), (b), (c) based on time 
domain, and (c) based on frequency domain, separately. Compared 
with those in Table 3, the numbers are presented in italics to indicate 
no performance improvement or performance decrease after feature 
selection.

According to Table 4, we clearly verify the merits of feature selection. 
The F-score and MCC have been substantially increased for all classifiers 
after feature selection, which indicates that feature selection resolves 
the feature interaction problem. As for the comparison between feature 
group (a) and the others, there is no significantly lower performance 
for groups (b) and (c) than group (a). On the contrary, we identified 
several significant positive results after feature selection.  For example, 
the addition of PCA-related features and behavior-derived patterns 
increased F-score and MCC significantly for VFI and Random Forest.

We list the top-6 features in Table 5. The top-3 features are the 
demographic attributes, among which sex has been reported to be one 

Classifier Category
PART [16] Decision-based

LADTree [17] Decision-based
K* [18] Instance-based

K-NN [19] Instance-based
Logistic Regression [20] Probabilistic

Bayes Net [21] Probabilistic
ANN [22] Neural network
VFI [23] Feature-based

Random Forest [24] Ensemble

Table 2: List of classifiers.

Classifier F-score MCC Accuracy

PART

0.368 0.090 0.611
0.369 0.104 0.628
0.342 0.066 0.607
0.373 0.138 0.648

LADTree

0.294 0.072 0.641
0.391 0.147 0.646
0.316 0.072 0.628
0.336 0.077 0.615

K* 

0.333 0.023 0.571
0.333 0.063 0.605
0.321 0.019 0.581
0.371 0.072 0.592

K-NN 

0.341 0.078 0.619
0.344 0.093 0.630
0.256 0.021 0.620
0.315 0.039 0.602

Logistic 
Regression 

0.369 0.168 0.671
0.385 0.127 0.633*

0.366 0.019 0.538*

0.356 0.019 0.546*

Bayes Net 

0.516 0.291 0.689
0.501 0.268 0.676*

0.395* 0.032* 0.513*

0.435 0.098 0.546*

ANN

0.440 0.185 0.648
0.363 0.097 0.617
0.353 0.078 0.605
0.383 0.122 0.628

VFI 

0.513 0.251 0.638
0.517 0.254 0.641
0.402* 0.019* 0.495*

0.433 0.095 0.543*

Random Forest 

0.260 0.076 0.656
0.270 0.130 0.681
0.166 -0.044 0.620
0.255 0.069 0.645

*Indicates a significant difference (p-val<0.05) from group (a)
Table 3: Results of classifiers using different features.
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strong factor for PONV in several studies, and our study reconfirmed 
this finding. In addition, we also identified patient height to be an 
important factor, which agrees with a similar finding has been reported 
in a survival analysis [25-27]. The remaining are pattern features that 
characterize PCA patient demand behaviors.

Experiemnt of data cleaning

While nausea and vomiting are most common adverse effects of 
IV-PCA, the incidence of PONV is relatively low, which makes the 
machine learning task an imbalanced classification problem. In this 

study, we proposed to apply a neighborhood-based data cleaning 
method to better balance the classes and reveal a clearer class boundary 
by removing redundant data points of the major class. 

Discussion 
After feature selection, we performed data cleaning. We compared 

the effects of data cleaning for feature groups (a), (b) and (c). We show 
the results in Table 6. Compared with those in Table 4, the numbers 
are presented in italics to indicate no performance improvement or 
performance decrease after data cleaning. From Table 6 we notice that 
data cleaning improved F-score and MCC for most of the classifiers 
except that the MCCs of Bayes Net and VFI decreased. Nevertheless, it is 
worth notice that when frequency-based behavior pattern features were 
used, data cleaning increased both F-score and MCC for all classifiers, 
and VFI produced the highest performance for F-score and MCC. In 
contrast to F-score and MCC, accuracy of all the classifiers decreased 
variably after data cleaning in exchange for higher F-score and MCC. 
For an imbalanced class prediction problem such as PONV, F-score 
and MCC are more appropriate measures than accuracy, and we have 
verified that our data cleaning method can warrant better performance.

Classifier F-score MCC Accuracy

PART

0.427 0.240 0.696
0.478 0.263 0.689
0.425 0.218 0.684
0.415 0.183 0.656

LADTree

0.403 0.148 0.636
0.403 0.148 0.636
0.394 0.188 0.666
0.352 0.105 0.628

K* 

0.448 0.206 0.648
0.422 0.208 0.669
0.464 0.242 0.679
0.458 0.248 0.687

K-NN

0.426 0.192 0.663
0.399 0.162 0.655
0.434 0.222 0.679
0.418 0.193 0.663

Logistic Regression 

0.518 0.313 0.699
0.518 0.313 0.699
0.498 0.316 0.707
0.455 0.272 0.707

Bayes Net 

0.523 0.306 0.697
0.523 0.303 0.694
0.519 0.310 0.702
0.521 0.306 0.700

ANN

0.537 0.304 0.682
0.531 0.311 0.694
0.470 0.221 0.659
0.472 0.258 0.686

VFI 

0.553 0.322 0.682
0.553 0.322 0.682
0.555 0.316 0.684
0.611 0.404 0.699

Random Forest 

0.401 0.157 0.648
0.424 0.184 0.656
0.486 0.267 0.689
0.448 0.231 0.679

Indicates a significant difference (p-val<0.05) from group (a)
Table 4: Results of applying feature selection.

Significant Features
Surgery Size
Sex
Patient Height
Frequency-based Behavior Patterns, using 20 min time units
Frequency-based Behavior Patterns, using 60 min time units
Time-based Behavior Patterns, using 60 min time units

Table 5: Significant patient features as risk factors.

Classifier F-score MCC Accuracy

PART

0.526 0.249 0.597
0.560 0.305 0.633
0.521 0.244 0.585
0.553 0.294 0.574

LADTree

0.544 0.273 0.602
0.544 0.273 0.602
0.549 0.294 0.638
0.546 0.273 0.551

K* 

0.519 0.219 0.508
0.535 0.275 0.631

0.535 0.268 0.618

0.576 0.344 0.630

K-NN

0.536 0.267 0.525
0.552 0.296 0.597

0.531 0.286 0.657

0.566 0.320 0.628

Logistic Regression 

0.561 0.317 0.635
0.561 0.317 0.635
0.561 0.317 0.635
0.577 0.352 0.671

Bayes Net 

0.539 0.272 0.526
0.550 0.290 0.554

0.544 0.284 0.564

0.591 0.366� 0.671

ANN

0.563 0.322 0.649
0.558 0.313 0.644
0.558 0.301 0.564

0.548 0.279 0.584

VFI 

0.557 0.307 0.618
0.557 0.307 0.618
0.557 0.307 0.618
0.613 0.406 0.697

Random Forest 

0.554 0.298 0.594
0.516 0.230 0.582
0.549 0.291 0.605
0.561 0.317 0.602

Indicates a significant difference (p-val<0.05) from group (a)
Table 6: Results of data cleaning.
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Conclusion
Despite advancements in postoperative pain management, 

postoperative patient satisfaction remains inadequate in a large fraction 
of hospitalized patients. In addition to pain, nausea and vomiting have 
been the most distressing side effects of IV-PCA. Significant efforts 
have been focused on identifying and analyzing risk factors for PONV 
[8-10] whereas few previous works ever tested the identified factors for 
evaluating their predictive strengths. Unlike most previous research 
that mainly adapted statistical approaches, we not only applied machine 
learning methods for PONV prediction, but also made a thorough 
comparison of their performances. In addition, we proposed to 
consider patient PCA demand behaviors to improve PONV prediction. 
We conducted stratified 10-fold cross-validation, and the results 
confirmed the feasibility of the application of machine learning to pain 
management.       
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